FORECAST.ETS.STAT.MULT Function
Mengembalikan nilai statistik yang merupakan hasil dari algoritma ETS / EDS.
Penghalusan Eksponensial adalah metode untuk menghaluskan nilai riil dalam deret waktu untuk memperkirakan kemungkinan nilai di masa depan.
Exponential Triple Smoothing (ETS) adalah satu set algoritma dimana kedua trend dan berkala(musiman) pengaruh diproses. Exponential Double Smoothing (EDS) adalah algoritma seperti ETS, tetapi tanpa pengaruh secara berkala. EDS menghasilkan perkiraan linier.
FORECAST.ETS.STAT.MULT menghitung dengan model
perkiraan = (nilai dasar + tren * ∆x) * periodical_aberration.
FORECAST.ETS.STAT.MULT (values, timeline, stat_type, [period_length], [data_completion], [aggregation])
nilai (wajib): Larik atau rentang numerik. nilai adalah nilai historis, yang ingin Anda perkirakan poin berikutnya.
timeline (mandatory): A numeric array or range. The timeline (x-value) range for the historical values.
The timeline does not have to be sorted, the functions will sort it for calculations.
The timeline values must have a consistent step between them.
If a constant step cannot be identified in the sorted timeline, the functions will return the #NUM! error.
If the ranges of both the timeline and the historical values are not the same size, the functions will return the #N/A error.
If the timeline contains fewer than 2 data periods, the functions will return the #VALUE! error.
stat_type (wajib) : Nilai numerik dari 1 hingga 9. Nilai yang menunjukkan statistik mana yang akan dikembalikan untuk nilai dan rentang x yang diberikan.
Statistik berikut dapat dikembalikan:
stat_type
|
Statistik
|
1
|
Parameter perataan alfa dari algoritma ETS (basis)
|
2
|
Parameter pemulusan gamma dari algoritma ETS (tren)
|
3
|
Parameter pemulusan beta dari algoritma ETS (penyimpangan periodik)
|
4
|
Mean absolute scaled error (MASE) - ukuran akurasi perkiraan.
|
5
|
Symmetric mean absolute percentage error (SMAPE) - ukuran akurasi berdasarkan kesalahan persentase.
|
6
|
Mean absolute error (MAE) - ukuran akurasi perkiraan.
|
7
|
Root mean squared error (RMSE) - ukuran perbedaan antara nilai yang diprediksi dan yang diamati.
|
8
|
Ukuran langkah terdeteksi garis waktu (rentang x). Ketika stepsize dalam bulan / kuartal / tahun terdeteksi, stepsize dalam bulan, jika tidak stepsize dalam beberapa hari dalam kasus tanggal (waktu) dan numerik dalam kasus lain.
|
9
|
Jumlah sampel dalam periode - ini sama dengan argumen period_length , atau jumlah yang dihitung jika argumen period_length menjadi 1.
|
panjang_periode (opsional): Nilai numerik >= 0, standarnya adalah 1. Bilangan bulat positif yang menunjukkan jumlah sampel dalam suatu periode.
Nilai 1 menunjukkan bahwa Calc adalah untuk menentukan jumlah sampel dalam suatu periode secara otomatis.
A nilai 0 menunjukkan tidak ada efek periodik, perkiraan dihitung dengan algoritma EDS.
Untuk semua nilai positif lainnya, prakiraan dihitung dengan algoritma ETS.
Untuk nilai yang tidak menjadi bilangan bulat positif, fungsi akan mengembalikan #NUM! Kesalahan.
data_completion (opsional): nilai logis TRUE atau FALSE, angka 1 atau 0, standarnya adalah 1 (TRUE). Nilai 0 (SALAH) akan menambahkan titik data yang hilang dengan nol sebagai nilai historis. Nilai 1 (TRUE) akan menambahkan titik data yang hilang dengan menyisipkan di antara titik data tetangga.
Meskipun garis waktu membutuhkan langkah konstan antara titik data, fungsi mendukung hingga 30% titik data yang hilang, dan akan menambahkan titik data ini.
agregasi (opsional): Nilai numerik dari 1 hingga 7, dengan default 1. Parameter agregasi menunjukkan metode mana yang akan digunakan untuk menggabungkan nilai waktu yang identik:
Agregasi
|
Fungsi
|
1
|
AVERAGE
|
2
|
COUNT
|
3
|
COUNTA
|
4
|
MAX
|
5
|
MEDIAN
|
6
|
MIN
|
7
|
SUM
|
Meskipun garis waktu membutuhkan langkah konstan antara titik data, fungsi akan mengumpulkan beberapa titik yang memiliki cap waktu yang sama.
Tabel di bawah ini berisi garis waktu dan nilai terkait:
|
A
|
B
|
1
|
Alur waktu
|
Nilai
|
2
|
01/2013
|
112
|
3
|
02/2013
|
118
|
4
|
03/2013
|
132
|
5
|
04/2013
|
100
|
6
|
05/2013
|
121
|
7
|
06/2013
|
135
|
8
|
07/2013
|
148
|
9
|
08/2013
|
148
|
10
|
09/2013
|
136
|
11
|
10/2013
|
119
|
12
|
11/2013
|
104
|
13
|
12/2013
|
118
|
=FORECAST.ETS.STAT.MULT(Values;Timeline;5;1;TRUE();1)
Mengembalikan 0,084073452803966, statistik multiplikasi berdasarkan pada nilai dan Jadwal yang diberi rentang di atas, dengan kesalahan persentase absolut rata-rata simetris (SMAPE), satu sampel per periode, tidak ada data yang hilang, dan AVERAGE sebagai agregasi.
=FORECAST.ETS.STAT.MULT(Values;Timeline;7;1;TRUE();7)
Mengembalikan 15.8372533480997, statistik multiplikasi berdasarkan pada Nilai dan Jadwal yang disebutkan di atas, dengan kesalahan kuadrat rata-rata akar, tidak ada data yang hilang, dan SUM sebagai agregasi.
Fungsi ini tersedia sejak Collabora Office 5.2.
This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is
ORG.LIBREOFFICE.FORECAST.ETS.STAT.MULT