עזרה עבור Collabora Office 24.04
Returns the sum of squares of deviations based on a sample mean.
DEVSQ(Number 1 [; Number 2 [; … [; Number 255]]])
=DEVSQ(A1:A50)
\<bookmark_value\>regression lines\</bookmark_value\>\<bookmark_value\>extrapolations\</bookmark_value\>\<bookmark_value\>FORECAST function\</bookmark_value\>Extrapolates future values based on existing x and y values.
FORECAST(Value; data_Y; data_X)
\<emph\>Value\</emph\> is the x value, for which the y value on the linear regression is to be returned.
\<emph\>Data_Y\</emph\> is the array or range of known y's.
\<emph\>Data_X\</emph\> is the array or range of known x's.
=FORECAST(50; A1:A50; B1;B50) returns the Y value expected for the X value of 50 if the X and Y values in both references are linked by a linear trend.
\<bookmark_value\>regression lines\</bookmark_value\>\<bookmark_value\>extrapolations\</bookmark_value\>\<bookmark_value\>FORECAST function\</bookmark_value\>Extrapolates future values based on existing x and y values.
FORECAST.LINEAR(Value; DataY; DataX)
\<emph\>Value\</emph\> is the x value, for which the y value on the linear regression is to be returned.
\<emph\>Data_Y\</emph\> is the array or range of known y's.
\<emph\>Data_X\</emph\> is the array or range of known x's.
=FORECAST(50; A1:A50; B1;B50) returns the Y value expected for the X value of 50 if the X and Y values in both references are linked by a linear trend.
COM.MICROSOFT.FORECAST.LINEAR
\<bookmark_value\>NORMSDIST function\</bookmark_value\>\<bookmark_value\>normal distribution;statistics\</bookmark_value\>Returns the standard normal cumulative distribution function. The distribution has a mean of zero and a standard deviation of one.
It is GAUSS(x)=NORMSDIST(x)-0.5
NORMSDIST(Number)
\<emph\>Number\</emph\> is the value to which the standard normal cumulative distribution is calculated.
=NORMSDIST(1) returns 0.84. The area below the standard normal distribution curve to the left of X value 1 is 84% of the total area.
\<bookmark_value\>NORMSDIST function\</bookmark_value\>\<bookmark_value\>normal distribution;statistics\</bookmark_value\>Returns the standard normal cumulative distribution function. The distribution has a mean of zero and a standard deviation of one.
NORM.S.DIST(Number; Cumulative)
\<emph\>Number\</emph\> is the value to which the standard normal cumulative distribution is calculated.
Cumulative 0 or FALSE calculates the probability density function. Any other value or TRUE calculates the cumulative distribution function.
=NORM.S.DIST(1;0) returns 0.2419707245.
=NORMSDIST(1) returns 0.84. The area below the standard normal distribution curve to the left of X value 1 is 84% of the total area.
COM.MICROSOFT.NORM.S.DIST
\<bookmark_value\>NORMSINV function\</bookmark_value\>\<bookmark_value\>normal distribution;inverse of standard\</bookmark_value\>Returns the inverse of the standard normal cumulative distribution.
NORMINV(Number)
\<emph\>Number\</emph\> is the probability to which the inverse standard normal distribution is calculated.
NORMSINV(0.908789) returns 1.3333.
\<bookmark_value\>NORMSINV function\</bookmark_value\>\<bookmark_value\>normal distribution;inverse of standard\</bookmark_value\>Returns the inverse of the standard normal cumulative distribution.
NORMINV(Number)
\<emph\>Number\</emph\> is the probability to which the inverse standard normal distribution is calculated.
NORMSINV(0.908789) returns 1.3333.
COM.MICROSOFT.NORM.S.INV
\<bookmark_value\>PERMUT function\</bookmark_value\>\<bookmark_value\>number of permutations\</bookmark_value\>Returns the number of permutations for a given number of objects.
PERMUT(Count_1; Count_2)
\<emph\>Count_1\</emph\> is the total number of objects.
\<emph\>Count_2\</emph\> is the number of objects in each permutation.
=PERMUT(6; 3) returns 120. There are 120 different possibilities, to pick a sequence of 3 playing cards out of 6 playing cards.
\<bookmark_value\>PERMUTATIONA function\</bookmark_value\>Returns the number of permutations for a given number of objects (repetition allowed).
PERMUTATIONA(Count_1; Count_2)
\<emph\>Count_1\</emph\> is the total number of objects.
\<emph\>Count_2\</emph\> is the number of objects in each permutation.
How often can 2 objects be selected from a total of 11 objects?
PERMUTATIONA(11;2) returns 121.
PERMUTATIONA(6; 3) returns 216. There are 216 different possibilities to put a sequence of 3 playing cards together out of six playing cards if every card is returned before the next one is drawn.
\<bookmark_value\>PROB function\</bookmark_value\>Returns the probability that values in a range are between two limits. If there is no End value, this function calculates the probability based on the principle that the Data values are equal to the value of Start.
PROB(Data; Probability; Start [; End])
\<emph\>Data\</emph\> is the array or range of data in the sample.
\<emph\>Probability\</emph\> is the array or range of the corresponding probabilities.
\<emph\>Start\</emph\> is the start value of the interval whose probabilities are to be summed.
End (optional) is the end value of the interval whose probabilities are to be summed. If this parameter is missing, the probability for the Start value is calculated.
=PROB(A1:A50; B1:B50; 50; 60) returns the probability with which a value within the range of A1:A50 is also within the limits between 50 and 60. Every value within the range of A1:A50 has a probability within the range of B1:B50.
\<bookmark_value\>RANK function\</bookmark_value\>\<bookmark_value\>numbers;determining ranks\</bookmark_value\>Returns the rank of a number in a sample.
RANK(Value; Data [; Type])
\<emph\>Value\</emph\> is the value, whose rank is to be determined.
\<emph\>Data\</emph\> is the array or range of data in the sample.
\<emph\>Type\</emph\> (optional) is the sequence order.
Type = 0 means descending from the last item of the array to the first (this is the default),
Type = 1 means ascending from the first item of the range to the last.
=RANK(A10; A1:A50) returns the ranking of the value in A10 in value range A1:A50. If \<emph\>Value\</emph\> does not exist within the range an error message is displayed.
\<bookmark_value\>RANK function\</bookmark_value\>\<bookmark_value\>numbers;determining ranks\</bookmark_value\>Returns the statistical rank of a given value, within a supplied array of values. If there are duplicate values in the list, the average rank is returned.
The difference between RANK.AVG and RANK.EQ occurs when there are duplicates in the list of values. The RANK.EQ function returns the lower rank, whereas the RANK.AVG function returns the average rank.
RANK.AVG(Value; Data [; Type])
\<emph\>Value\</emph\> is the value, whose rank is to be determined.
\<emph\>Data\</emph\> is the array or range of data in the sample.
\<emph\>Type\</emph\> (optional) is the sequence order.
Type = 1 means ascending from the first item of the range to the last.
Type = 1 means ascending from the first item of the range to the last.
=RANK(A10; A1:A50) returns the ranking of the value in A10 in value range A1:A50. If \<emph\>Value\</emph\> does not exist within the range an error message is displayed.
COM.MICROSOFT.RANK.AVG
\<bookmark_value\>RANK function\</bookmark_value\>\<bookmark_value\>numbers;determining ranks\</bookmark_value\>Returns the statistical rank of a given value, within a supplied array of values. If there are duplicate values in the list, these are given the same rank.
The difference between RANK.AVG and RANK.EQ occurs when there are duplicates in the list of values. The RANK.EQ function returns the lower rank, whereas the RANK.AVG function returns the average rank.
RANK.EQ(Value; Data [; Type])
\<emph\>Value\</emph\> is the value, whose rank is to be determined.
\<emph\>Data\</emph\> is the array or range of data in the sample.
\<emph\>Type\</emph\> (optional) is the sequence order.
Type = 1 means ascending from the first item of the range to the last.
Type = 1 means ascending from the first item of the range to the last.
=RANK(A10; A1:A50) returns the ranking of the value in A10 in value range A1:A50. If \<emph\>Value\</emph\> does not exist within the range an error message is displayed.
COM.MICROSOFT.RANK.EQ
\<bookmark_value\>SKEW function\</bookmark_value\>Returns the skewness of a distribution.
SKEW(Number 1 [; Number 2 [; … [; Number 255]]])
The parameters should specify at least three values.
=SKEW(A1:A50) calculates the value of skew for the data referenced.
\<bookmark_value\>SLOPE function\</bookmark_value\>Returns the slope of the linear regression line. The slope is adapted to the data points set in the y and x values.
SLOPE(data_Y; data_X)
\<emph\>Data_Y\</emph\> is the array or matrix of Y data.
\<emph\>Data_X\</emph\> is the array or matrix of X data.
=SLOPE(A1:A50; B1:B50)
\<bookmark_value\>STANDARDIZE function\</bookmark_value\>\<bookmark_value\>converting;random variables, into normalized values\</bookmark_value\>Converts a random variable to a normalized value.
STANDARDIZE(Number; mean; STDEV)
\<emph\>Number\</emph\> is the value to be standardized.
\<emph\>Mean\</emph\> is the arithmetic mean of the distribution.
\<emph\>STDEV\</emph\> is the standard deviation of the distribution.
=STANDARDIZE(11; 10; 1) returns 1. The value 11 in a normal distribution with a mean of 10 and a standard deviation of 1 is as much above the mean of 10, as the value 1 is above the mean of the standard normal distribution.
\<bookmark_value\>STDEV function\</bookmark_value\>\<bookmark_value\>standard deviations in statistics;based on a sample\</bookmark_value\>Estimates the standard deviation based on a sample.
STDEV(Number 1 [; Number 2 [; … [; Number 255]]])
The parameters should specify at least two values.
=STDEV(A1:A50) returns the estimated standard deviation based on the data referenced.
\<bookmark_value\>STDEVA function\</bookmark_value\>Calculates the standard deviation of an estimation based on a sample.
STDEVA(Number 1 [; Number 2 [; … [; Number 255]]])
The parameters should specify at least two values. Text has the value 0.
=STDEVA(A1:A50) returns the estimated standard deviation based on the data referenced.
\<bookmark_value\>STDEVP function\</bookmark_value\>\<bookmark_value\>standard deviations in statistics;based on a population\</bookmark_value\>Calculates the standard deviation based on the entire population.
STDEVP(Number 1 [; Number 2 [; … [; Number 255]]])
=STDEVP(A1:A50) returns a standard deviation of the data referenced.
\<bookmark_value\>STDEVP function\</bookmark_value\>\<bookmark_value\>standard deviations in statistics;based on a population\</bookmark_value\>Calculates the standard deviation based on the entire population.
STDEV.P(Number 1 [; Number 2 [; … [; Number 255]]])
=STDEVP(A1:A50) returns a standard deviation of the data referenced.
COM.MICROSOFT.STDEV.P
\<bookmark_value\>STDEV function\</bookmark_value\>\<bookmark_value\>standard deviations in statistics;based on a sample\</bookmark_value\>Calculates the standard deviation based on sample of the population.
STDEV.S(Number 1 [; Number 2 [; … [; Number 255]]])
The parameters should specify at least two values.
=STDEVP(A1:A50) returns a standard deviation of the data referenced.
COM.MICROSOFT.STDEV.S
\<bookmark_value\>STDEVPA function\</bookmark_value\>Calculates the standard deviation based on the entire population.
STDEVPA(Number 1 [; Number 2 [; … [; Number 255]]])
Text has the value 0.
=STDEVPA(A1:A50) returns the standard deviation of the data referenced.
\<bookmark_value\>STEYX function\</bookmark_value\>\<bookmark_value\>standard errors\</bookmark_value\>Returns the standard error of the predicted y value for each x in the regression.
STEYX(data_Y; data_X)
\<emph\>Data_Y\</emph\> is the array or matrix of Y data.
\<emph\>Data_X\</emph\> is the array or matrix of X data.
=STEXY(A1:A50; B1:B50)
\<bookmark_value\>TDIST function\</bookmark_value\>\<bookmark_value\>t-distribution\</bookmark_value\>Calculates the two-tailed Student's T Distribution, which is a continuous probability distribution that is frequently used for testing hypotheses on small sample data sets.
CHIDIST (Number; degrees_freedom)
\<emph\>Number\</emph\> is the value for which the t-distribution is calculated.
\<emph\>Degrees_freedom\</emph\> is the number of degrees of freedom for the t-distribution.
=T.DIST.2T(1; 10) returns 0.3408931323.
COM.MICROSOFT.T.DIST.2T
\<bookmark_value\>TDIST function\</bookmark_value\>\<bookmark_value\>t-distribution\</bookmark_value\>Calculates the right-tailed Student's T Distribution, which is a continuous probability distribution that is frequently used for testing hypotheses on small sample data sets.
CHIDIST (Number; degrees_freedom)
\<emph\>Number\</emph\> is the value for which the t-distribution is calculated.
\<emph\>Degrees_freedom\</emph\> is the number of degrees of freedom for the t-distribution.
=T.DIST.RT(1; 10) returns 0.1704465662.
COM.MICROSOFT.T.DIST.RT
\<bookmark_value\>TINV function\</bookmark_value\>\<bookmark_value\>inverse of t-distribution\</bookmark_value\>Calculates the inverse of the two-tailed Student's T Distribution , which is a continuous probability distribution that is frequently used for testing hypotheses on small sample data sets.
TINV(Number; degrees_freedom)
\<emph\>Number\</emph\> is the probability associated with the two-tailed t-distribution.
\<emph\>Degrees_freedom\</emph\> is the number of degrees of freedom for the t-distribution.
=T.INV.2T(0.25; 10) returns 1.221255395.
COM.MICROSOFT.T.INV.2T
\<bookmark_value\>TDIST function\</bookmark_value\>\<bookmark_value\>t-distribution\</bookmark_value\>Returns the t-distribution.
TDIST(Number; Degrees_freedom; Mode)
\<emph\>Number\</emph\> is the value for which the t-distribution is calculated.
\<emph\>Degrees_freedom\</emph\> is the number of degrees of freedom for the t-distribution.
\<emph\>Mode\</emph\> = 1 returns the one-tailed test, \<emph\>Mode\</emph\> = 2 returns the two-tailed test.
=TDIST(12; 5; 1)
\<bookmark_value\>TDIST function\</bookmark_value\>\<bookmark_value\>t-distribution\</bookmark_value\>Returns the t-distribution.
TDIST(Number; Degrees_freedom; Mode)
\<emph\>Number\</emph\> is the value for which the t-distribution is calculated.
\<emph\>Degrees_freedom\</emph\> is the number of degrees of freedom for the t-distribution.
Cumulative = 0 or FALSE returns the probability density function, 1 or TRUE returns the cumulative distribution function.
=T.DIST(1; 10; TRUE) returns 0.8295534338
COM.MICROSOFT.T.DIST
\<bookmark_value\>TINV function\</bookmark_value\>\<bookmark_value\>inverse of t-distribution\</bookmark_value\>Returns the inverse of the t-distribution.
TINV(Number; degrees_freedom)
\<emph\>Number\</emph\> is the probability associated with the two-tailed t-distribution.
\<emph\>Degrees_freedom\</emph\> is the number of degrees of freedom for the t-distribution.
=TINV(0.1; 6) returns 1.94
\<bookmark_value\>TINV function\</bookmark_value\>\<bookmark_value\>inverse of t-distribution\</bookmark_value\>Returns the one tailed inverse of the t-distribution.
TINV(Number; degrees_freedom)
\<emph\>Number\</emph\> is the probability associated with the two-tailed t-distribution.
\<emph\>Degrees_freedom\</emph\> is the number of degrees of freedom for the t-distribution.
=TINV(0.1; 6) returns 1.94
COM.MICROSOFT.T.INV
\<bookmark_value\>TTEST function\</bookmark_value\>Returns the probability associated with a Student's t-Test.
TTEST(Data_1; Data_2; Mode; Type)
\<emph\>Data_1\</emph\> is the dependent array or range of data for the first record.
\<emph\>Data_2\</emph\> is the dependent array or range of data for the second record.
\<emph\>Mode\</emph\> = 1 calculates the one-tailed test, \<emph\>Mode\</emph\> = 2 the two- tailed test.
\<emph\>Type\</emph\> is the kind of t-test to perform. Type 1 means paired. Type 2 means two samples, equal variance (homoscedastic). Type 3 means two samples, unequal variance (heteroscedastic).
=TTEST(A1:A50; B1:B50; 2; 2)
\<bookmark_value\>TTEST function\</bookmark_value\>Returns the probability associated with a Student's t-Test.
TTEST(Data_1; Data_2; Mode; Type)
\<emph\>Data_1\</emph\> is the dependent array or range of data for the first record.
\<emph\>Data_2\</emph\> is the dependent array or range of data for the second record.
\<emph\>Mode\</emph\> = 1 calculates the one-tailed test, \<emph\>Mode\</emph\> = 2 the two- tailed test.
\<emph\>Type\</emph\> is the kind of t-test to perform. Type 1 means paired. Type 2 means two samples, equal variance (homoscedastic). Type 3 means two samples, unequal variance (heteroscedastic).
=TTEST(A1:A50; B1:B50; 2; 2)
COM.MICROSOFT.T.TEST
\<bookmark_value\>VAR function\</bookmark_value\>\<bookmark_value\>variances\</bookmark_value\>Estimates the variance based on a sample.
VAR(Number 1 [; Number 2 [; … [; Number 255]]])
The parameters should specify at least two values.
=VAR(A1:A50)
\<bookmark_value\>VARA function\</bookmark_value\>Estimates a variance based on a sample. The value of text is 0.
VARA(Number 1 [; Number 2 [; … [; Number 255]]])
The parameters should specify at least two values.
=VARA(A1:A50)
\<bookmark_value\>VAR function\</bookmark_value\>\<bookmark_value\>variances\</bookmark_value\>Estimates the variance based on a sample.
VAR.S(Number 1 [; Number 2 [; … [; Number 255]]])
The parameters should specify at least two values.
=VAR(A1:A50)
COM.MICROSOFT.VAR.S
\<bookmark_value\>VARP function\</bookmark_value\>Calculates a variance based on the entire population.
VARP(Number 1 [; Number 2 [; … [; Number 255]]])
=VARP(A1:A50)
\<bookmark_value\>VARP function\</bookmark_value\>Calculates a variance based on the entire population.
VAR.P(Number 1 [; Number 2 [; … [; Number 255]]])
=VARP(A1:A50)
COM.MICROSOFT.VAR.P
\<bookmark_value\>VARPA function\</bookmark_value\>Calculates the variance based on the entire population. The value of text is 0.
VARPA(Number 1 [; Number 2 [; … [; Number 255]]])
=VARPA(A1:A50)
\<bookmark_value\>WEIBULL function\</bookmark_value\>Returns the values of the Weibull distribution.
The Weibull distribution is a continuous probability distribution, with parameters Alpha > 0 (shape) and Beta > 0 (scale).
If C is 0, WEIBULL calculates the probability density function.
If C is 1, WEIBULL calculates the cumulative distribution function.
WEIBULL(Number; Alpha; Beta; C)
\<emph\>Number\</emph\> is the value at which to calculate the Weibull distribution.
\<emph\>Alpha \</emph\>is the Alpha parameter of the Weibull distribution.
\<emph\>Beta\</emph\> is the Beta parameter of the Weibull distribution.
C indicates the type of function.
=WEIBULL(2; 1; 1; 1) returns 0.86.
See also the Wiki page.
\<bookmark_value\>WEIBULL function\</bookmark_value\>Returns the values of the Weibull distribution.
The Weibull distribution is a continuous probability distribution, with parameters Alpha > 0 (shape) and Beta > 0 (scale).
If C is 0, WEIBULL.DIST calculates the probability density function.
If C is 1, WEIBULL.DIST calculates the cumulative distribution function.
WEIBULL(Number; Alpha; Beta; C)
\<emph\>Number\</emph\> is the value at which to calculate the Weibull distribution.
\<emph\>Alpha \</emph\>is the Alpha parameter of the Weibull distribution.
\<emph\>Beta\</emph\> is the Beta parameter of the Weibull distribution.
C indicates the type of function.
=WEIBULL(2; 1; 1; 1) returns 0.86.
See also the Wiki page.
COM.MICROSOFT.WEIBULL.DIST