עזרה עבור Collabora Office 24.04
The Add-in functions are supplied by the UNO com.sun.star.sheet.addin.Analysis service.
Returns the cosine of a complex number.
Returns the hyperbolic cosine of a complex number.
Returns the cotangent of a complex number.
Returns the cosecant of a complex number.
Returns the hyperbolic cosecant of a complex number.
Returns the secant of a complex number.
Returns the hyperbolic secant of a complex number.
Returns the sine of a complex number.
Returns the hyperbolic sine of a complex number.
Returns the tangent of a complex number.
Converts a value from one unit of measurement to the corresponding value in another unit of measurement.
\<bookmark_value\>COMPLEX function\</bookmark_value\>The result is a complex number which is returned from a real coefficient and an imaginary coefficient.
COMPLEX(RealNum; INum [; Suffix])
Real num: the real coefficient of the complex number.
I num: the imaginary coefficient of the complex number.
Suffix: list of options, "i" or "j".
=COMPLEX(3;4;j) returns 3+4j.
\<bookmark_value\>FACTDOUBLE function\</bookmark_value\>\<bookmark_value\>factorials;numbers with increments of two\</bookmark_value\>Returns the double factorial of a number.
FACTDOUBLE(Number)
Number: if the number is even, the following factorial is calculated: n*(N-2)*(n-4)*...*4*2.
For even numbers FACTDOUBLE(n) returns:
2*4*6*8* ... *n
For odd numbers FACTDOUBLE(n) returns:
1*3*5*7* ... *n
FACTDOUBLE(0) returns 1 by definition.
=FACTDOUBLE(6) returns 48.
=FACTDOUBLE(6) returns 48.
=FACTDOUBLE(6) returns 48.
\<bookmark_value\>IMABS function\</bookmark_value\>The result is the absolute value of a complex number.
IMABS(Complex number)
ComplexNumber is a complex number that is entered in the form "x+yi" or "x+yj".
=IMABS("5+12j") returns 13.
\<bookmark_value\>IMAGINARY function\</bookmark_value\>The result is the imaginary coefficient of a complex number.
IMAGINARY(Complex number)
=IMAGINARY("4+3j") returns 3.
\<bookmark_value\>IMARGUMENT function\</bookmark_value\>The result is the argument (the phi angle) of a complex number.
IMARGUMENT(Complex number)
=IMARGUMENT("3+4j") returns 0.927295.
\<bookmark_value\>IMCONJUGATE function\</bookmark_value\>The result is the conjugated complex complement to a complex number.
IMCONJUGATE(Complex number)
=IMCONJUGATE("1+j") returns 1-j.
\<bookmark_value\>IMDIV function\</bookmark_value\>The result is the division of two complex numbers.
IMDIV(Numerator;Denominator)
Numerator, Denominator: the complex numbers are entered in the form "x + yi" or "x + yj"
=IMDIV("-238+240i";"10+24i") returns 5+12i.
\<bookmark_value\>IMEXP function\</bookmark_value\>The result is the power of e and the complex number. The constant e has a value of approximately 2.71828182845904.
IMEXP(Complex number)
=IMEXP("1+j") returns 1.47+2.29j (rounded).
\<bookmark_value\>IMLN function\</bookmark_value\>The result is the natural logarithm (to the base e) of a complex number. The constant e has a value of approximately 2.71828182845904.
IMLN(Complex number)
=IMLN("1+j") returns 0.35+0.79j (rounded).
\<bookmark_value\>IMLOG10 function\</bookmark_value\>The result is the common logarithm (to the base 10) of a complex number.
IMLOG10(Complex number)
=IMLOG10("1+j") returns 0.15+0.34j (rounded).
\<bookmark_value\>IMLOG2 function\</bookmark_value\>The result is the binary logarithm of a complex number.
IMLOG2(Complex number)
=IMLOG2("1+j") returns 0.50+1.13j (rounded).
\<bookmark_value\>IMPOWER function\</bookmark_value\>The result is the ComplexNumber raised to the power of Number.
IMPOWER(Complex number;Number)
Number: the exponent.
=IMPOWER("2+3i";2) returns -5+12i.
\<bookmark_value\>IMPRODUCT function\</bookmark_value\>The result is the product of a set of complex numbers.
IMPRODUCT(Complex 1 [; Complex 2 [; … [; Complex 255]]])
=IMPRODUCT("3+4j";"5-3j") returns 27+11j.
\<bookmark_value\>IMREAL function\</bookmark_value\>The result is the real coefficient of a complex number.
IMREAL(Complex number)
=IMREAL("1+3j") returns 1.
\<bookmark_value\>IMSQRT function\</bookmark_value\>The result is the square root of a complex number.
IMSQRT(Complex number)
=IMSQRT("3+4i") returns 2+1i.
\<bookmark_value\>IMSUB function\</bookmark_value\>The result is the subtraction of two complex numbers.
IMSUB(Complex number 1;Complex number 2)
=IMSUB("13+4j";"5+3j") returns 8+j.
\<bookmark_value\>IMSUM function\</bookmark_value\>The result is the sum of a set of complex numbers.
IMSUM(Complex 1 [; Complex 2 [; … [; Complex 255]]])
=IMSUM("13+4j";"5+3j") returns 18+7j.
\<bookmark_value\>OCT2BIN function\</bookmark_value\>\<bookmark_value\>converting;octal numbers, into binary numbers\</bookmark_value\>The result is the string representing the number in binary (base-2) form for the octal number string entered.
OCT2BIN(Number [; Places])
Number is a string that represents an octal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement.
Places: the number of places to be output.
=OCT2BIN("3";3) returns "011".
\<bookmark_value\>OCT2DEC function\</bookmark_value\>\<bookmark_value\>converting;octal numbers, into decimal numbers\</bookmark_value\>The result is the number for the octal number string entered.
OCT2DEC(Number)
Number is a string that represents an octal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement.
=OCT2DEC("144") returns 100.
\<bookmark_value\>OCT2HEX function\</bookmark_value\>\<bookmark_value\>converting;octal numbers, into hexadecimal numbers\</bookmark_value\>The result is the string representing the number in hexadecimal form for the octal number string entered.
OCT2HEX(Number [; Places])
Number is a string that represents an octal number. It can have a maximum of 10 places. The most significant bit is the sign bit, the following bits return the value. Negative numbers are entered as two's complement.
Places: the number of places to be output.
=OCT2HEX("144";4) returns "0064".