Statistical Functions Part One

COUNTIFS

Returns the count of cells that meet criteria in multiple ranges.

B

Returns the probability of a sample with binomial distribution.

Sintaxe

B(Trials; SP; T1 [; T2])

Trials is the number of independent trials.

Valor p: a probabilidade de éxito de cada ensaio.

T1 defines the lower limit for the number of trials.

T2 (optional) defines the upper limit for the number of trials.

Exemplo

What is the probability with ten throws of the dice, that a six will come up exactly twice? The probability of a six (or any other number) is 1/6. The following formula combines these factors:

=B(10;1/6;2) returns a probability of 29%.

BINOM.INV

Returns the smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value.

Sintaxe

BINOM.INV(Trials; SP; Alpha)

Trials The total number of trials.

Valor p: a probabilidade de éxito de cada ensaio.

Alpha The border probability that is attained or exceeded.

Exemplo

=BINOM.INV(8;0.6;0.9) returns 7, the smallest value for which the cumulative binomial distribution is greater than or equal to a criterion value.

Technical information

tip

Esta función está dispoñíbel desde a versión 4.2 do Collabora Office.


This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.BINOM.INV

CHISQDIST

Returns the probability of a deviance from a random distribution of two test series based on the chi-squared test for independence. CHISQ.TEST returns the chi-squared distribution of the data.

The probability determined by CHISQ.TEST can also be determined with CHISQ.DIST, in which case the Chi square of the random sample must then be passed as a parameter instead of the data row.

Sintaxe

CHISQ.TEST(DataB; DataE)

DataB is the array of the observations.

DataE is the range of the expected values.

Exemplo

Data_B (observed)

Data_E (expected)

1

195

170

2

151

170

3

148

170

4

189

170

5

183

170

6

154

170


=CHISQ.TEST(A1:A6;B1:B6) equals 0.0209708029. This is the probability which suffices the observed data of the theoretical Chi-square distribution.

Technical information

tip

Esta función está dispoñíbel desde a versión 4.2 do Collabora Office.


This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.CHISQ.TEST

CHISQDIST

Returns the probability density function or the cumulative distribution function for the chi-square distribution.

Sintaxe

CHISQ.DIST(Number; DegreesFreedom; Cumulative)

Number is the chi-square value of the random sample used to determine the error probability.

DegreesFreedom are the degrees of freedom of the experiment.

Cumulative can be 0 or False to calculate the probability density function. It can be any other value or True to calculate the cumulative distribution function.

Exemplo

=CHISQ.DIST(3; 2; 0) equals 0.1115650801, the probability density function with 2 degrees of freedom, at x = 3.

=CHISQ.DIST(3; 2; 1) equals 0.7768698399, the cumulative chi-square distribution with 2 degrees of freedom, at the value x = 3.

Technical information

tip

Esta función está dispoñíbel desde a versión 4.2 do Collabora Office.


This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.CHISQ.DIST

CHISQDIST

Returns the probability value from the indicated Chi square that a hypothesis is confirmed. CHISQ.DIST.RT compares the Chi square value to be given for a random sample that is calculated from the sum of (observed value-expected value)^2/expected value for all values with the theoretical Chi square distribution and determines from this the probability of error for the hypothesis to be tested.

The probability determined by CHISQ.DIST.RT can also be determined by CHITEST.

Sintaxe

CHISQ.DIST.RT(Number; DegreesFreedom)

Number is the chi-square value of the random sample used to determine the error probability.

DegreesFreedom are the degrees of freedom of the experiment.

Exemplo

=CHISQ.DIST.RT(13.27; 5) equals 0.0209757694.

If the Chi square value of the random sample is 13.27 and if the experiment has 5 degrees of freedom, then the hypothesis is assured with a probability of error of 2%.

Technical information

tip

Esta función está dispoñíbel desde a versión 4.2 do Collabora Office.


This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.CHISQ.DIST.RT

CHISQDIST

Returns the value of the probability density function or the cumulative distribution function for the chi-square distribution.

Sintaxe

CHISQDIST(Number; Degrees Of Freedom [; Cumulative])

X é o valor no cal a función será calculada.

Degrees Of Freedom is the degrees of freedom for the chi-square function.

Cumulative (optional): 0 or False calculates the probability density function. Other values or True or omitted calculates the cumulative distribution function.

CHISQINV

Returns the inverse of CHISQDIST.

Sintaxe

CHISQINV(Probability; Degrees of Freedom)

X é o valor no cal a función será calculada.

Degrees Of Freedom is the degrees of freedom for the chi-square function.

CHISQINV

Returns the inverse of the left-tailed probability of the chi-square distribution.

Sintaxe

CHISQ.INV(Probability; DegreesFreedom)

X é o valor no cal a función será calculada.

Degrees Of Freedom is the degrees of freedom for the chi-square function.

Exemplo

=CHISQ.INV(0,5;1) returns 0.4549364231.

Technical information

tip

Esta función está dispoñíbel desde a versión 4.2 do Collabora Office.


This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.CHISQ.INV

CHISQINV

Returns the inverse of the one-tailed probability of the chi-squared distribution.

Sintaxe

CHISQ.INV.RT(Number; DegreesFreedom)

NúmeroX é o valor da coordenada x.

DegreesFreedom is the degrees of freedom of the experiment.

Exemplo

A die is thrown 1020 times. The numbers on the die 1 through 6 come up 195, 151, 148, 189, 183 and 154 times (observation values). The hypothesis that the die is not fixed is to be tested.

The Chi square distribution of the random sample is determined by the formula given above. Since the expected value for a given number on the die for n throws is n times 1/6, thus 1020/6 = 170, the formula returns a Chi square value of 13.27.

If the (observed) Chi square is greater than or equal to the (theoretical) Chi square CHIINV, the hypothesis will be discarded, since the deviation between theory and experiment is too great. If the observed Chi square is less that CHIINV, the hypothesis is confirmed with the indicated probability of error.

=CHISQ.INV.RT(0.05;5) returns 11.0704976935.

=NORMSINV(0.908789) devolve 1,3333.

If the probability of error is 5%, the die is not true. If the probability of error is 2%, there is no reason to believe it is fixed.

Technical information

tip

Esta función está dispoñíbel desde a versión 4.2 do Collabora Office.


This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.CHISQ.INV.RT

CONTA

Counts how many numbers are in the list of arguments. Text entries are ignored.

Sintaxe

COUNT(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

note

This function ignores any text or empty cell within a data range. If you suspect wrong results from this function, look for text in the data ranges. To highlight text contents in a data range, use the value highlighting feature.


Exemplo

The entries 2, 4, 6 and eight in the Value 1-4 fields are to be counted.

=COUNT(2;4;6;"eight") = 3. The count of numbers is therefore 3.

COUNTA

Counts how many values are in the list of arguments. Text entries are also counted, even when they contain an empty string of length 0. If an argument is an array or reference, empty cells within the array or reference are ignored.

Sintaxe

COUNTA(Number 1 [; Number 2 [; … [; Number 255]]])

Number 1, Number 2, … , Number 255 are numbers, references to cells or to cell ranges of numbers.

Exemplo

The entries 2, 4, 6 and eight in the Value 1-4 fields are to be counted.

=COUNTA(2;4;6;"eight") = 4. The count of values is therefore 4.

COUNTBLANK

Returns the number of empty cells.

Sintaxe

COUNTBLANK(intervalo)

Returns the number of empty cells in the cell range Range.

Exemplo

=COUNTBLANK(A1:B2) returns 4 if cells A1, A2, B1, and B2 are all empty.

COUNTIF

Returns the number of cells that meet with certain criteria within a cell range.

Sintaxe

COUNTIF(Range; Criterion)

Faixa é o intervalo ao cal os criterios deben ser aplicados.

Criterion: A criterion is a single cell Reference, Number or Text. It is used in comparisons with cell contents.

A reference to an empty cell is interpreted as the numeric value 0.

A matching expression can be:

The search supports wildcards or regular expressions. With regular expressions enabled, you can enter "all.*", for example to find the first location of "all" followed by any characters. If you want to search for a text that is also a regular expression, you must either precede every regular expression metacharacter or operator with a "\" character, or enclose the text into \Q...\E. You can switch the automatic evaluation of wildcards or regular expression on and off in - Collabora Office Calc - Calculate.

warning

Ao empregar funcións nas que un ou máis argumentos sexan criterios de busca que representen unha expresión regular, téntase primeiro converter os criterios da cadea en números. Por exemplo, «.0» convértese en 0.0, etc. Se resulta ben, a busca non será unha coincidencia de expresión regular senón unha coincidencia numérica. Porén, ao traballar cunha configuración rexional na que o separador decimal non sexa o punto, como en galego, o punto fai que funcione a conversión a expresión regular. Para obrigar a que a avaliación sexa dunha expresión regular no canto dunha expresión numérica hai que empregar algunha expresión que non se poda confundir cunha numérica, como «.[0]», «.\0» ou «(?i).0».


Exemplo

A1:A10 is a cell range containing the numbers 2000 to 2009. Cell B1 contains the number 2006. In cell B2, you enter a formula:

=COUNTIF(A1:A10;2006) - this returns 1.

=COUNTIF(A1:A10;B1) - this returns 1.

=COUNTIF(A1:A10;">=2006") - this returns 4.

=COUNTIF(A1:A10;"<"&B1) - when B1 contains 2006, this returns 6.

=COUNTIF(A1:A10;C2) where cell C2 contains the text >2006 counts the number of cells in the range A1:A10 which are >2006.

Para resumir só números negativos: = SUMIF (A1: A10;"<0")

DISTBETA

Devolve a distribución t.

Sintaxe

BETADIST(Number; Alpha; Beta [; Start [; End [; Cumulative]]])

Number is the value between Start and End at which to evaluate the function.

Alpha is a parameter to the distribution.

Beta is a parameter to the distribution.

Start (optional) is the lower bound for Number.

End (optional) is the upper bound for Number.

Cumulative (optional) can be 0 or False to calculate the probability density function. It can be any other value or True or omitted to calculate the cumulative distribution function.

Nas funcións de Collabora Office Calc, os parámetros marcados como «opcional» só poden omitirse cando non haxa ningún outro parámetro a seguir. Por exemplo, nunha función de catro parámetros, dos cales só os dous últimos aparecen marcados como «opcional», pódese omitir o parámetro 4 ou os parámetros 3 e 4, mais non é posíbel omitir exclusivamente o parámetro 3.

Exemplo

=BETADIST(0.75;3;4) returns the value 0.96.

DISTBETA

Devolve a distribución t.

tip

Esta función está dispoñíbel desde a versión 4.2 do Collabora Office.


Sintaxe

BETA.DIST(Number; Alpha; Beta; Cumulative [; Start [; End]])

Number (required) is the value between Start and End at which to evaluate the function.

Alpha (required) is a parameter to the distribution.

Beta (required) is a parameter to the distribution.

Cumulative (required) can be 0 or False to calculate the probability density function. It can be any other value or True to calculate the cumulative distribution function.

Start (optional) is the lower bound for Number.

End (optional) is the upper bound for Number.

Nas funcións de Collabora Office Calc, os parámetros marcados como «opcional» só poden omitirse cando non haxa ningún outro parámetro a seguir. Por exemplo, nunha función de catro parámetros, dos cales só os dous últimos aparecen marcados como «opcional», pódese omitir o parámetro 4 ou os parámetros 3 e 4, mais non é posíbel omitir exclusivamente o parámetro 3.

Exemplo

=BETA.DIST(2;8;10;1;1;3) returns the value 0.6854706

=BETA.DIST(2;8;10;0;1;3) returns the value 1.4837646

Technical information

This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.BETA.DIST

DISTBINOM

Returns the individual term binomial distribution probability.

Sintaxe

BINOMDIST(X; Trials; SP; C)

X is the number of successes in a set of trials.

Trials is the number of independent trials.

Valor p: a probabilidade de éxito de cada ensaio.

C = 0 calculates the probability of a single event and C = 1 calculates the cumulative probability.

Exemplo

=BINOMDIST(A1;12;0.5;0) shows (if the values 0 to 12 are entered in A1) the probabilities for 12 flips of a coin that Heads will come up exactly the number of times entered in A1.

=BINOMDIST(A1;12;0.5;1) shows the cumulative probabilities for the same series. For example, if A1 = 4, the cumulative probability of the series is 0, 1, 2, 3 or 4 times Heads (non-exclusive OR).

DISTBINOM

Returns the individual term binomial distribution probability.

Sintaxe

BINOM.DIST(X; Trials; SP; C)

X is the number of successes in a set of trials.

Trials is the number of independent trials.

Valor p: a probabilidade de éxito de cada ensaio.

C = 0 calculates the probability of a single event and C = 1 calculates the cumulative probability.

Exemplo

=BINOM.DIST(A1;12;0.5;0) shows (if the values 0 to 12 are entered in A1) the probabilities for 12 flips of a coin that Heads will come up exactly the number of times entered in A1.

=BINOM.DIST(A1;12;0.5;1) shows the cumulative probabilities for the same series. For example, if A1 = 4, the cumulative probability of the series is 0, 1, 2, 3 or 4 times Heads (non-exclusive OR).

Technical information

tip

Esta función está dispoñíbel desde a versión 4.2 do Collabora Office.


This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.BINOM.DIST

DISTEXP

Devolve a distribución exponencial.

Sintaxe

EXPONDIST(Number; Lambda; C)

NúmeroX é o valor da coordenada x.

Lambda is the parameter value.

C is a logical value that determines the form of the function. C = 0 calculates the density function, and C = 1 calculates the distribution.

Exemplo

NEGBINOMDIST(2;5;0,55) devolve 0,152872629

DISTEXP

Devolve a distribución exponencial.

Sintaxe

EXPON.DIST(Number; Lambda; C)

NúmeroX é o valor da coordenada x.

Lambda is the parameter value.

C is a logical value that determines the form of the function. C = 0 calculates the density function, and C = 1 calculates the distribution.

Exemplo

NEGBINOMDIST(2;5;0,55) devolve 0,152872629

Technical information

tip

Esta función está dispoñíbel desde a versión 4.2 do Collabora Office.


This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.EXPON.DIST

DISTKHI

Returns the probability value from the indicated Chi square that a hypothesis is confirmed. CHIDIST compares the Chi square value to be given for a random sample that is calculated from the sum of (observed value-expected value)^2/expected value for all values with the theoretical Chi square distribution and determines from this the probability of error for the hypothesis to be tested.

The probability determined by CHIDIST can also be determined by CHITEST.

Sintaxe

CHIDIST(Number; DegreesFreedom)

Number is the chi-square value of the random sample used to determine the error probability.

DegreesFreedom are the degrees of freedom of the experiment.

Exemplo

=CHIDIST(13.27; 5) equals 0.02.

If the Chi square value of the random sample is 13.27 and if the experiment has 5 degrees of freedom, then the hypothesis is assured with a probability of error of 2%.

INTERSECCIÓN

Calculates the point at which a line will intersect the y-values by using known x-values and y-values.

Sintaxe

INTERCEPT(DataY; DataX)

DataY is the dependent set of observations or data.

DataX is the independent set of observations or data.

Names, arrays or references containing numbers must be used here. Numbers can also be entered directly.

Exemplo

To calculate the intercept, use cells D3:D9 as the y value and C3:C9 as the x value from the example spreadsheet. Input will be as follows:

=INTERCEPT(D3:D9;C3:C9) = 2.15.

INVBETA

Returns the inverse of the cumulative Beta probability density function.

Sintaxe

BETAINV(Number; Alpha; Beta [; Start [; End]])

Number is the probability associated with the Beta distribution for the given arguments Alpha and Beta.

Alpha is a strictly positive parameter of the Beta distribution.

Beta is a strictly positive parameter of the Beta distribution.

Start (optional) is the lower bound of the output range of the function. If omitted, the default value is 0.

End (optional) is the upper bound of the output range of the function. If omitted, the default value is 1.

Nas funcións de Collabora Office Calc, os parámetros marcados como «opcional» só poden omitirse cando non haxa ningún outro parámetro a seguir. Por exemplo, nunha función de catro parámetros, dos cales só os dous últimos aparecen marcados como «opcional», pódese omitir o parámetro 4 ou os parámetros 3 e 4, mais non é posíbel omitir exclusivamente o parámetro 3.

Exemplo

=BETAINV(0.5;5;10) returns the value 0.3257511553.

BETAINV Wiki page

INVBETA

Returns the inverse of the cumulative Beta probability density function.

Sintaxe

BETA.INV(Number; Alpha; Beta [; Start [; End]])

Number is the probability associated with the Beta distribution for the given arguments Alpha and Beta.

Alpha is a strictly positive parameter of the Beta distribution.

Beta is a strictly positive parameter of the Beta distribution.

Start (optional) is the lower bound of the output range of the function. If omitted, the default value is 0.

End (optional) is the upper bound of the output range of the function. If omitted, the default value is 1.

Nas funcións de Collabora Office Calc, os parámetros marcados como «opcional» só poden omitirse cando non haxa ningún outro parámetro a seguir. Por exemplo, nunha función de catro parámetros, dos cales só os dous últimos aparecen marcados como «opcional», pódese omitir o parámetro 4 ou os parámetros 3 e 4, mais non é posíbel omitir exclusivamente o parámetro 3.

Exemplo

=BETA.INV(0.5;5;10) returns the value 0.3257511553.

BETA.INV Wiki page

Technical information

tip

Esta función está dispoñíbel desde a versión 4.2 do Collabora Office.


This function is not part of the Open Document Format for Office Applications (OpenDocument) Version 1.3. Part 4: Recalculated Formula (OpenFormula) Format standard. The name space is

COM.MICROSOFT.BETA.INV

INVKHI

Returns the inverse of the one-tailed probability of the chi-squared distribution.

Sintaxe

CHIINV(Number; DegreesFreedom)

NúmeroX é o valor da coordenada x.

DegreesFreedom is the degrees of freedom of the experiment.

Exemplo

A die is thrown 1020 times. The numbers on the die 1 through 6 come up 195, 151, 148, 189, 183 and 154 times (observation values). The hypothesis that the die is not fixed is to be tested.

The Chi square distribution of the random sample is determined by the formula given above. Since the expected value for a given number on the die for n throws is n times 1/6, thus 1020/6 = 170, the formula returns a Chi square value of 13.27.

If the (observed) Chi square is greater than or equal to the (theoretical) Chi square CHIINV, the hypothesis will be discarded, since the deviation between theory and experiment is too great. If the observed Chi square is less that CHIINV, the hypothesis is confirmed with the indicated probability of error.

=CHIINV(0.05;5) returns 11.07.

=NORMSINV(0.908789) devolve 1,3333.

If the probability of error is 5%, the die is not true. If the probability of error is 2%, there is no reason to believe it is fixed.

RCAD

Returns the square of the Pearson correlation coefficient based on the given values. RSQ (also called determination coefficient) is a measure for the accuracy of an adjustment and can be used to produce a regression analysis.

Sintaxe

RSQ(DataY; DataX)

Servizos representa a matriz dos valores límite.

Servizos representa a matriz dos valores límite.

Exemplo

=RSQ(A1:A20;B1:B20) calculates the determination coefficient for both data sets in columns A and B.

TESTEKHI

Returns the probability of a deviance from a random distribution of two test series based on the chi-squared test for independence. CHITEST returns the chi-squared distribution of the data.

The probability determined by CHITEST can also be determined with CHIDIST, in which case the Chi square of the random sample must then be passed as a parameter instead of the data row.

Sintaxe

CHITEST(DataB; DataE)

DataB is the array of the observations.

DataE is the range of the expected values.

Exemplo

Data_B (observed)

Data_E (expected)

1

195

170

2

151

170

3

148

170

4

189

170

5

183

170

6

154

170


=CHITEST(A1:A6;B1:B6) equals 0.02. This is the probability which suffices the observed data of the theoretical Chi-square distribution.

Precisamos da súa axuda!